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Abstract

State-of-the-art recommender systems have the ability to generate high-quality recommendations, but usually cannot pro-
vide explanations to humans due to the usage of black-box prediction models. The lack of transparency has highlighted the
critical importance of improving the explainability of recommender systems. In this paper, we propose to construct causal
explainable recommendation which aims to provide post-hoc explanations for the recommendations by answering “what
if” questions, e.g., “what would the recommendation result change if the user’s behavior history had been different?” Our
approach first obtains counterfactual user histories and counterfactual recommendation items with the aid of a perturbation
model, and then extracts personalized causal relationships for the recommendation model through a causal rule mining
algorithm. Different from some existing explainable recommendation models that aim to provide persuasive explanations,
our model aims to find out the true explanations for the recommendation of an item. Therefore, in addition to evaluating
the fidelity of discovered causal explanations, we adopt the average causal effect to measure the quality of explanations.
Here by quality we mean whether they are true explanations rather than their persuasiveness. We conduct experiments for
several state-of-the-art sequential recommendation models on real-world datasets to verify the performance of our model
on generating causal explanations.
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tems have been recognized for its ability to provide high- Counterfactual History
quality services that reduce the gap between products and
customers. And many state-of-the-art models achieves
outstanding expressiveness by using high-dimensional
user/item representations and deep learning models with
thousands or even millions of parameters [1, 2]. How-
ever, this excessive complexity easily go beyond the com-
prehension of a human who may demand for intuitive
explanations for why the model made a specific decision.
Moreover, providing supportive information and inter-
pretation along with the recommendation can be helpful
for both the customers and the platform, since it improves
the transparency, persuasiveness, trustworthiness, effec-
tiveness, and user satisfaction of the recommendation
systems, while facilitating system designers to refine the
algorithms [3]. Thus, people are looking for solutions
that can generate explanations along with the recommen-
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Recommender

Figure 1: An example of causal explanation. Comparing the
recommendation of real history and counterfactual histories,
if replacing one certain item will result in the change of rec-
ommendation, the certain item could be the true reason that
the system recommends the original item.

dation.

One typical method to solve explainable recommenda-
tion is to construct a model-intrinsic explanation mod-
ule that also serves as an intermediate recommendation
stage[4, 5]. However, this approach has to redesign the
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original recommendation model and thus may sacrifice
model accuracy in order to obtain good explanations
[6]. Moreover, for complex deep models, it is even more
challenging to integrate an explainable method into the
original design while maintaining recommendation per-
formance [3]. In contrast, post-hoc models (a.k.a model-
agnostic explanation) consider the underlying recommen-
dation model as a black-box, and provide explanations
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after the recommendation decision has been made. Al-
though such explanations may not strictly follow the
exact mechanism that generated the corresponding rec-
ommendations, they offer the flexibility to be applied to a
wide range of recommendation models. Furthermore, the
explanation model and recommendation model work sep-
arately, we obtain the benefit of explainability without
hurting the prediction performance.

While it is still not fully understood what informa-
tion is useful to generate the explanations for a certain
recommendation result, Peake [7] argued that one can
provide post-hoc item-level explanations. Specifically, in-
teracted items (the causes) in a user’s history can be used
as explanations for the future item recommendations (the
effect). The authors propose to solve this by association
rule mining which finds co-occurred items as explanation.
However, explanations generated by association rules are
not personalized, i.e., different users would receive the
same explanation as long as the rules are only applied
to their overlapped histories. This makes it incompatible
with modern recommender systems, which aim to pro-
vide personalized services to users. Moreover, we believe
that the true explanation of a recommendation model
should be able to answer the questions like “which item
contribute to the system’s decision?” as well as “ Will
the system change the decision if a different set of items
were purchased by the same user? ” In other words,
the explanation should be aware of the counterfactual
world of the unobserved user histories and their corre-
sponding recommendation when analyzing the cause of
a recommendation in real world.

In this paper, we explore a counterfactual analysis
framework to provide post-hoc causal explanations for
any given black-box sequential recommendation algo-
rithm. Fig.1 shows an example to illustrate our intuition.
Technically, we first create several counterfactual histo-
ries which are different but similar to the real history
through a Variational Auto-Encoder (VAE) based per-
turbation model, and obtain the recommendation for
the counterfactual data. Then we apply causal analysis
on the combined data to extract causal rules between a
user’s history and future behaviors as explanations. Un-
like other explainable recommendation models [4, 8, 9]
that focus on persuading users to keep engaged with
the system, this type of explanation focuses on model
transparency and finds out the true reason or the most
essential item that leads to a specific recommendation.
Therefore, instead of taking user studies or online evalu-
ations to evaluate the persuasiveness or effectiveness of
explanations, we use the average causal effect to measure
whether the item used for explanation can explain how
the system works.

The key contributions of this paper are as follows:

» We design and study a counterfactual explain-

able framework for a wide range of sequential
recommendations.

+ We show that this framework can generate per-
sonalized post-hoc explanations based on item-
level causal rules.

« We conduct several experiments on real-world
data to demonstrate that our explanation model
outperforms state-of-the-art baselines in terms of
fidelity.

« We apply average causal effect to illustrate that
the causal explanations provided by our frame-
work are essential component for most sequential
recommendation model.

For the remainder of this paper, we first review related
work in Section 2, and then introduce our model in Sec-
tion 3. Experimental settings and results are provided in
Section 4. Finally, we conclude this work in Section 5.

2. Related Work

2.1. Sequential Recommendation

Sequential recommendation takes into account the his-
torical order of items interacted by a user and aims to
capture useful sequential patterns to make consecutive
predictions of the user’s future behaviors. Rendle et al.
[10] proposed Factorized Personalized Markov Chains
(FPMC) to combine Markov chain and matrix factoriza-
tion for next basket recommendation. The Hierarchical
Representation Model (HRM) [11] further extended this
idea by leveraging representation learning as latent fac-
tors in a hierarchical model. However, these methods can
only model the local sequential patterns of very limited
number of adjacent records. To model multi-step sequen-
tial behaviors, He et al. [12] adopted Markov chain to
provide recommendations with sparse sequences. Later
on, the rapid development of representation learning
and neural networks introduced many new techniques
that further pushed the research of sequential recom-
mendation to a new level. For example, Hidasi et. al.
[13] used an RNN-based model to learn the user his-
tory representation, Yu et. al. [14] provided a dynamic
recurrent model, Li et. al. [15] proposed an attention-
based GRU model, Chen et. al. [16] developed user- and
item-level memory networks, and Huang et. al. [17] fur-
ther integrated knowledge graphs into memory networks.
However, most of the models exhibit complicated neural
network architectures, and it is usually difficult to inter-
pret their prediction results. To make up for this, we plan
to generate explanations for these black box sequential
recommendation models.



2.2. Explainable Recommendation and reinforcement learning43, etc. With respect to

. . . recommendation tasks, large amount of work is about
Explainable recommendation focuses on developing mo

els that can generate not onlv hiah-auality recommen ow to achieve de-bias matrix factorization with causal
. generate | y high-q YT inference. The probabilistic approach ExpoMF proposed
dations but also intuitive explanations, which help to

imorove the transparency of the recommendation s Sip [44) directly incorporated user exposure to items into
P P y Y¥ollaborative Itering, where the exposure is modeled as

tems [3]. Generally, the explainable models can be eithe latent variable. Liang et. al4F followed to develop

?popiﬁgﬁggs:gtos rg;;%?jgrn::;';i r’?:&ggggg;gg;;;% causal inference approach to recommender systems
’ S which believed that the exposure and click data came
methods, such as factorization models 18 9, 19, deep P

camingmouels? 162123 knowidge raph models [ 7L S e e ik i s 0
[23 5, 17, 24, 25 26, explanation ranking models47],

logical reasoning models] 28 29, dynamic explana- sure data. They used causal inference to correct for this

- . . bias for improving generalization of recommendation
tion models B0 37], visual explanation models3] and systems to new data. Bonner et. al( proposed a new

Batur:alrlangua:jgeAgrﬁmraratlomn ﬁn(:dt:lizii 3\/3 ?:ﬂl h?vlet ﬂomain adaptation algorithm which was learned from
€en proposed. ore complete review ot the refa eogged data including outcomes from a biased recom-

models can be seen irf} However, they mix the recom- mendation policy, and predicted recommendation results

mendation mechanism with interpretable componentsaCCorCIing to random exposure. Besides de-bias recom-

which often results in over-complicated systems to make Fndation, Ghazimatin et. al.4f proposed PRINCE

successful explanations. Moreover, the increased moc{%1 . . -
comblexit mg reduce the interpretability. A natural odel to explore counterfactual evidence for discovering
plexity may p Y- causal explanations in a heterogeneous information net-

way to avoid this dilemmais to rely on model-_agnostlcwork_ Di erently, this paper focuses on learning causal
post-hoc approaches so that the recommendation system

is free from the noises of the down-stream explanatio rules to provide more intuitive explanation for the black-
. P 9% ox sequential recommendation models. Additionally,
generator. Examples includ@§ that proposed a bandit

approach, Bq that proposed a reinforcement IearningWe consider §7 as a highly related work though it is
! i riginally pr for natural lan r in ks.
framework to generate sentence explanations, aff [0 ginally proposed for natural language processing tasks

that developed an association rule mining approach AGA-S we wiII_discuss_in the later section_s, we utilize some
I S . " "of the key ideas of its model construction, and show why

ditionally, some work distinguish the model explanations. ; . X .

. o - : .1t works in sequential recommendation scenarios.

by their purpose B7]: while persuasive explanations aim

to improve user engagement, model explanation re exes

how the system really works and may not necessarily b&, Proposed Approach

persuasive. Our study fall into the later case and aims

to nd causal explanations for a given sequential recomk this section, we rst de ne the explanation problem

mendation model. and then introduce our model as a combination of two

parts: a VAE-based perturbation model that generates the

counterfactual samples for causal analysis, and a causal

rule mining model that can extract causal dependencies

Originated as statistical problems, causal inferen88& [ between the cause-e ect items.

39 aims at understanding and explaining the causal ef-

fect of one variable on another. While the observationaé

data is considered as the factual world, causal e ect in-’

ferences should be aware of the counterfactual world/e denote the set of users &= fui;uz;  ;Ujy; 9

thus often being regarded as the questions of "what-ifand set of items aé = fi;iz: +iyj 9. Each usen

The challenge is that it is often expensive or even imis associated with a purchase history represented as a

possible to obtain counterfactual data. For example, #equence of itembl". Thej -th interacted item in the

is immoral to re-do the experiment on a patient to nd history is denoted a#i;* 2 | . Without speci cation, the

out what will happen if we have not given the medicine.calligraphicH in the paper represents user history, and

Though the majority of causal inference study resides im straightH represents an item. A black-box sequential

the direction of statistics and philosophy, it has recentlirecommendation moddf : H! | s a function that

attracted the attention from Al community for its great takes a sequence of items (as will discuss later, it can be

power of explainablity and bias elimination ability. Ef-the counterfactual user history) as input and outputs the

forts have managed to bring causal inference to severatcommended item. In practice, the underlying mecha-

machine learning areas, including recommendatiaif]] nism usually consists of two steps: a ranking function

learning to rank j1], natural language processingf], rst scores all candidate items based on the user history,

2.3. Causal Inference in Recommendation

1. Problem Setting



and then it selects the item with the highest score as th8.2.1. Perturbation Model

nal output. Note that it only uses user-item interac-_l_o capture the causal dependency between items in his-

tion without any content or context information, and the tory agd the recommende% items \)//ve want to know what

scores predicted by the ranking function may di er ac- . . ’ .
P y 9 y would take place if the user history had been di erent. To

. ) L avoid unknown in uences caused by the length of input
while [0; 1] for Click Through Rate (CTR) predlctlon).Sequence (i.e., user history), we k}:eep thegi]nput Iezgth

Our goal is to nd an item-level post-hoc model that cap-

tures the causal relation between the history items a”@?;;?f:f&:ﬂi&ﬂ% Eglztr:iislterlgz;l]l thfofiiléinﬁgr;o
the recommended item for each user. : Y

H{" in a user's historyH", it will be replaced by all pos-
De nition 1.  (Causal Relation) For two variablesand  sible items inl to fully explore the in uence thatH '
Y, if X triggersY, then we say that there is a causal renakes in the history. However, the number of possible
lationX ) Y, whereX isthecauseandY isthee ect. combinations will become impractical for the learning
system, since recommender systems usually deal with
) i hundreds of thousands or even tens of millions items. In
_When a given recommendation model maps a USer ;¢ counterfactual examples that are closest to the orig-
hlstoury H" to a recommended iter¥ ™ 2 1 , allittms j 'jinnyt can be the most useful to a user as shown in
in H" are considered as potential causesYof. Thus |4q Therefore, we pursue a perturbation-based method
we can formul!a@e the set of causal relation candidates qfat generate counterfactual examples, which replaces
S'=f(HY")H 2H" g. items in the original user historyH".
De nition 2. (Causal Explanation for Sequential Rec- There are various ways to obtain the counterfactual
ommendation Model) Given a causal relation candid&gtory, as long as they are similar to the real history.
setSY for useru, if there exists a true causal relatiod N€ simplest solution is randomly selecting an item in
(H;Y Y) 2 SY, then the causal explanation for recorid " and replacing it with a randomly selected item from
mendingY " is described as Because you purchased! N H “. However, user histories are far from random.
the model recommends y64 , denoted asl ) Y". Thus, we assume that their exists a ground truth user
history distribution, and we adopt VAE to learn such a dis-
Then the remaining problem is to determine whethetribution. As is shown in Figure 2, we design a VAE-based
a candidate pair is a true causal relation. perturbation method, which creates item sequences that
We can mitigate the problem by allowing a likelihood gre similar to but slightly di erent from a user's genuine
estimation for a candidate pair being a causal relation. history sequence, by sampling from a distribution in the
tent embedding space centered around the user's true
Istory sequence.
In detail, the VAE component consists of a probabilis-
encoder(; ) = ENC( X) and a decodeiX =
DEC(z). The encodeENC( ) takes a sequence of item
In other words, we would like to nd a ranking func- embeddingsX into latent embedding space, and extracts
tion that predicts the likelihood for each candidate pairthe variational information for the sequence, i.e., mean
and the causal explanation is generated by selecting thend variance of the latent embeddings under independent
pair with top ranking score from these candidates. On&aussian distribution. The decodBEC( ) generates a
advantage of this formulation is that it allows the possibilsequence of item embeddings given a latent embed-
ity of giving no causal relation between a user's historyding z sampled from the Gaussian distribution. Here,
and the recommended item, e.g., when algorithm reboth X andX are ordered concatenations of pre-trained
ommends the most popular items regardless of the uséem embeddings based on pair-wise matrix factorization
history. (BPR-MF)49. We follow the standard training regime
of VAE by maximizing the variational lower bound of the
3.2. Causal Model for Post-Hoc Explanation Qatalikeli_hooq BQ. Speci caII;_/, the reconstruction error
involved in this lower bound is calculated by a softmax
In this section, we introduce our counterfactual explanaacross all items for each position of the input sequence.
tion framework for recommendation. Inspired bytf], We observe that VAE can reconstruct the original data
we divide our framework into two models: a perturbation set accurately, while o ering the power of perturbation.
model and a causal rule mining model. The overview of After pretrainingENC( ) andDEC( ), the variational
the model framework is shown in Fig.2. nature of this model allows us to obtain counterfactual
history H for any real historyH. More speci cally, it
rst extracts the mean and variance of the encoded item

De nition 3.  (Causal Dependency) For a given can
date pair of causal relatio(H;Y "), the causal depen-
dency w.v v of that pair is the likelihood of the pair being[_

a true causal relation. Ic



Figure 2: Model framework x is the concatenation of the item embeddings of the user historjis the perturbed embedding.

sequences in the latent space, and then the perturbaticand output item?iu . We consider that the occurrence of
model samplem latent embeddingg based on the above a single output can be modeled as a logistic regression
variational information. These sampled embeddirgs on causal dependencies from all the input items in the
are then passed to the decodBEC( ) to obtain the sequence:

perturbed versions<. For now, each item embedding in X0

X may not represent an actual item since it is a sampled p(?i“jﬁ i“) = auopu " ! (1)
vector from the latent space, as aresult, we nd its nearest j=r

neighbor in the candidate item sétn H through dot
product similarity as the actual item. In this way is 1S ]
transformed into the nal counterfactual historyd. One (d +_e_xp( X).) in order to s_cale the score t{0; 1]
should keep in mind that the variance should be kep‘ﬁdd',tlonaHY’ in r(_ecommen(_jatlon task, the order of a
small during sampling, so that the resulting sequence Sers prewously |nteracted' items may a eqt their causal
can be similar to the original sequence. ependency with the user's next interaction. A closer

Finally, the generated counterfactual ddthtogether Eenav_lor tend;tt)o:av_e a stro(r;ger € ectdqfn # se;;s future d
with the original H will be injected into the black-box ehaviors, and behaviors are discounted it they happene

recommendation modet to obtain the recommenda- earlier [L3. Therefore, we involve a weight decay param-

tion resultsY andY , correspondingly. For any user, eter to represent the time e ect. Here is a positive
after completing this process, we will hava di erent value Iessf than one. L . .
counterfactual input-output pairsf (Hi“ : Viu)gi"ll as For an input-output pair inD", the probability of its
well as the original paifH": Y !). Here the value ofn occurrence generated by Kiy) should be close to one.

is manually set, but it cannot exceed the number of allf\s_ ? resrllJIt, Wilzglr_n the %‘Hs%ﬂepe”d.en.c!@’ mr?XI'
possible item combinations. mizing the probability oveD" . en optimizing , they

are always initialized as zero to allow for no causation
between two items. When learning this regression model,
we are able to gradually increaseuntil they converge to
DenoteD" as the combined records of counterfactuathe point where the data likelihood ob" is maximized.
input-output pairsf (' : Y )g', and the original pair  After gathering all the causal dependencies, we select
(HY;Y") for useru. We aim to develop a causal modethe items that have high scores to build causal explana-
that rst extracts causal dependencies between input antlons. This involves a three-step procedure.
outputs items appeared iB", and then selects the causal
rule based on these inferred causal dependencies. ) o ] u
Lethiu =1 A :’1; A i“z; ‘A ::1 ] be the input sequence whose output is th&e orlgjlna}{_ u (|.e.,?i = YY)
of thei-th record of D", WherelqitjJ is the j-th item in Note that these(lq ij » Y") pairs may come from

AY Let9" represent the corresponding output. Note either the original sequence or counterfactual se-
th:at this ir;cludes the original real paiH": Y!). The guences, because when a counterfactual sequence

: is fed into the black-box recommendation model,
model should be able to infer the causal depen(ujency the output mav happen to be the same as the
(refer to De nition 3) Ay between input itemA i P y happ

original sequencey V.

where is the sigmoid function de ned as (x) =

3.2.2. Causal Rule Learning Model

1. We select those causal dependencigs: .y u
ijori



Algorithm 1 Causal Explanation Model Table 1
Summary of the Datasets

Input: usersU, itemsl , user historyH",
counterfactual numbem, black-box modeF, Dataset # users # items # interactions # train # test sparsity

eomtbe‘:fj'”g mold&’lcaui.a' r;'”'”gYTOdSM h oy Movielens 943 1682 100,000 95,285 14,715 6.3%
utput: causal explanationsl ) where Amazon 573 478 13,062 9,624 3,438 4.7%

1. Use embedding mod&lto getitem embedding&(l )

can serve as an intuitive explanation for the black-box

2: UseE(l ) and true user history to train perturbation X
recommendation model.

modelP
3: for each useu do
4: for i from1tom do . 4.1. Dataset Description
5: Hi P (Hu),Y| F (H|) .
6 endfor We (_evaluate our proposed causal explanation framewor_k
7. Construct counterfactual input-output pairs against baselines on two datasets. The rst dataset is

MovieLens100k This dataset consists of information
about users, movies and ratings. In this dataset, each user
has rated at least 20 movies, and each movie can belong to

f(HE;YE)g{Ql .
g F(AG PG f (RN Y)L [ (HY YY)

o v e M f(ﬁ v _u) m+1 several genres. The second datase.t isthe o ce p.roduct
R i) ~ dataset from Amazoh which contains the user-item
10: Rank 4u.. and select togk pairs jnteractions from May 1996 to July 2014. The original

f(Hj;Y" )gjk:;L dataset is 5-core. To achieve sequential recommendation
11:  if OHmintjg 2 H" then with input length of 5, we select the users with at least
12: Generate causal explanatiofi,, 1;,) Y'Y 15 purchases and the items with at least 10 interactions.
13: else Since our framework is used to explain sequential rec-
14 No explanation for the recommended iteh  ommendation models, we split the dataset chronologi-
15:  end if cally. Further, to learn the pre-trained item embeddings
16: end for based on BPR-MH§] (section 3.2.1), we take the last
17: return all causal explanationsl ) YU 6 interactions from each user to construct the testing

set, and use all previous interactions from each user as
the training set. To avoid data leakage, when testing the
2. We sort the above selected causal dependenciB&ck-box recommendation models and our VAE-based
in descending order and take the tdp¢A .l: YY) perturbation model, we c_JnIy use the last 6 mtt_aractlons
pairs. of each user (i.e., the testing set of the pre-training stage).
3. If there exist one or more pairs in these tdp- Following common practice, we adopt the leave-one-out

pairs, which cause iter) “ appears in the user's protocol, i.e., among the 6 interactions in test set, we use
input’sequence-l U then \Iljve pick such pair of the the last one for testing, and the previous ve interactions

highest rank, and construdf “ ) YU as the will serve as input to the recommendation models. A
’ ij

causal explanation for the user. Otherwise, i ePrief summary of the data is shown in Table 1.

no cause item appears in the user history, then ) _
we output no causal explanation for the user. 4.2. Experimental Settings

Note that the extracted causal explanation is personaiVe adopt the following methods to train black-box se-
ized since the algorithm is applied dd", which only con- quential recommendation models and extract traditional
tains records centered around the user's original recordssociation rules as comparative explanations. Mean-
(H";Y"), while collaborative learning among users iswhile, we further conduct di erent variants of the per-
indirectly modeled by the VAE-based perturbation modeturbation model to analyze our model. We include both
The overall algorithm is provided in Alg.1. For each useghallow and deep models for the experiment.
there are two phases - perturbation phase (line 4-7) and FPMC [1(: The Factorized Personalized Markov
causal rule mining phase (line 8-15). Chain model, which combines matrix factorization and

Markov chains to capture user's personalized sequential

4. Experiments behavior patterns for predictioh

. . . Lhttps://grouplens.org/datasets/movielens/
In this section, we conduct experiments to show what  2hyps://nijianmo.github.io/amazon/

causal relationships our model can capture and how they ®https:/github.com/khesui/FPMC



Table 2

Results of Model Fidelity. Our causal explanation framework is tested under the number of candidate causal explanations
k = 1. The association explanation framework is tested under support, confidence, and li thresholds, respectively. The best
fidelity on each column is highlighted in bold.

Dataset Movielens 100k Amazon
Models FPMC GRU4Rec NARM Caser FPMC GRU4Rec NARM Caser

AR-sup 0.3160 0.1453 0.4581 0.1569 0.2932 0.1449 0.4066 0.2024
AR-conf  0.2959 0.1410 0.4305 0.1559 0.2949 0.1449 0.4031 0.1885
AR-i 0.2959 0.1410 0.4305 0.1559 0.2949 0.1449 0.4031 0.1885

CR-AE 0.5631 0.7413 0.7084 0.6151 0.6981 0.8255 0.8970 0.7260
CR-VAE 0.9650 0.9852 0.9714 0.9703 0.9511 0.9721 0.9791  0.9599

GRU4Rec [13: A session-based recommendatiordecoder are Multi-Layer Perceptrons (MLP) with two
model, which uses recurrent neural networks in partic-hidden layers, and each layer consists of 1024 neurons.
ular, Gated Recurrent Units (GRU) to capture sequentialhe only di erence between our model and the vari-
patterns for predictiofi. ant model CR-AE is that the variant model applies xed
NARM [15: A sequential recommendation modelnormal distribution as variance instead of learned person-
which utilizes GRU and attention mechanism to estimatalized variance. The default number of counterfactual
the importance of each interactions input-output pairs ism = 500 on both datasets. The
Caser[51: The ConvolutionAl Sequence Embeddingdefault time decay factor is = 0:7. We will discuss the
Recommendation (Caser) model, which adopts convia-uence of counterfactual numbem and time decay
lutional lters over recent items to learn the sequentialfactor in the experiments.
patterns for predictiofi. In the following, we will apply our model and all base-
AR-sup [7]: A post-hoc explanation model, which lines on the black-box recommendation models to evalu-
extract association rules from interactions from all usersate and compare the generated explanations. In particu-
and rank based on support value to generate item-levédr, we evaluate our framework from three perspectives.
explanations. First, a explanation model should at least be able to o er
AR-conf [7]: Extracting association rules and rankexplanations for most recommendations, we will show it
based on con dence value to get explanations. in the result (explanation delity). Second, if our model is
AR-lift [7]: Rank based on lift value among extracteccapable of generating explanations for most recommen-
association rules to generate explanations. dations, we need to verify that the causal explanations
CR-AE: A variant of our causal rule model which learned by our framework represent the key component
applies xed variance in hidden layer of AutoEncoderof recommendation mechanism (explanation quality). Fi-
model as the perturbation model. Compared with ounally, since counterfactual examples are involved in our
VAE-based perturbation model, this variant apply nonframework, our framework should be able to generate
personalized variance. closer counterfactual examples (counterfactual quality).
For black-box recommendation models FPM@dditionally, we shed light on how our model di ers
GRU4Rec, NARM and Caser, we adopt their besbm other models on statistical metrics.
parameter selection in their corresponding public imple-
mentation. For the association ruIe-paseq explanatiop 3 Model Fidelity
model, we follow the recommendations irv][to set
the optimal parameters: support = 0.1, con dencé very basic purpose of designing a explanation model
= 0.1, lift = 0.1, length = 2 foMovieLens100kand is to generate explanations for most recommendations.
support = 0.01, con dence = 0.01, lift = 0.01, lengtfherefore, an important evaluation measure for explana-
= 2 for Amazondataset due to its smaller scale. Wdion models is model delity, i.e., what's the percentage
accept top 100 rules based on corresponding values (Réthe recommendation results can be explained by the
support/con dencel/lift) as explanations model [3]. The results of model delity are shown in
For our causal rule learning framework, we set thelable 2. In this experiment, we only report the results of
item embedding size as 16, both the VAE encoder afgeping the number of candidate causal explanatiéns
ntps/github.comhungthanhphamo4/GRU4REC-pytorch as 1 for our framework and variant. For the association
Shttps://github.com/Wang-Shuo/Neural-Attentive-Session- rule e>_(pl.anat|on model _(sectlon 4.2), we apply the global

Based-Recommendation-PyTorch association rulesq] ranking by support, con dence, and
Shttps://github.com/graytowne/caser_pytorch lift, respectively.




We can see that on both datasets, our causal explana-Heredo() represents an external intervention, which
tion framework is able to generate explanations for mosforces a variable to take a speci ¢ value. Speci cally, in
of the recommended items (including the variant), whileour case, for an extracted causal riie) Y, we de ne
the association explanation approach can only provide exhe binary random variable as 1 H 2 I—Tiu , 0 else. We
planations for signi cantly fewer recommendations. Thealso de ne another variablg as a binary random variable,
underlying reason is that association explanations havevhich is 1 ifY'iu = Y,, otherwise it will be 0. We then
to be extracted based on the original input-output pairsieport average ACE on all generated explanations. Note
which limits the number of pairs that we can use for rulethat since the ACE value is used for causal related models,
extraction. However, based on the perturbation modelye cannot report it on the association rule baseline.
our causal explanation framework is capable of creating Suppose the perturbation model (section 3.2.1) cre-
many counterfactual examples to assist causal rule learatesm counterfactual inlput-output pairs for each user.
ing, which makes it possible to go beyond the limited (Ftiu ; Yiu)g{“zl . HereH " is created by our perturbation
original data to extract causal explanations. Moreovemodel (i.e. not observed in the original data), and thus
when the number of input and output items are limitedobservingH 2 B implies we havedo(x = 1) in ad-
(e.g. ve history items as input and the model recomvance. LeH ) Y" be the causal explanation extracted
mends only one item in our case), it is harder to matchoy the casual rule learning model (section 3.2.2). Then
global rules with personal interactions and recommenae estimate the ACE based on thesecounterfactual
dation, which limits the exibility of global association pairs as,

rules. ) .
Another interesting observation is that GRU4Rec and ~ t/1do(x = DI =Pr("y = 1jdo(x = 1))
Caser have signi cantly§ < 0:01) lower delity than _ #Pair{H 2 HY A Y = yu)
FPMC and NARM when explained by the association # Pair{H 2 H")
model. This is reasonable because FPMC is a Markov- Elyjdo(x = 0)] =Pr( y = 1jdo(x = 0)) @

based model that consider input as a basket and directly
learns the correlation between candidate items and each _ -
items in a sequence, as a result, it is easier to extract asso- #PairdH 2H)

ciation rules between inputs and outputs for the modelye report the ACE value of our model and variants in
NARM combines the whole session information and infable.3. While showing the ACE value, we still keep the
uence of each individual item in the session, thereforenumber of candidate causal explanatiokss 1.
association rules which involve individual information  We can see that our model can achieve higher ACE
will be easier to be extracted for this model. Howevekalue than the variant for most recommendation models
it also means that the delity performance of the assoon both dataset. But here we can observe an interesting
ciation approach highly depends on the recommendgesults that the ACE value for FPMC model is much lower
tion model being explained. Meanwhile, we see that outhan other recommendation models (GRU4Rec, NARM,
causal approach achieves comparably good delity on altaser). Meanwhile, the variant model has slightly larger
three recommendation models, because the perturbatighCE than our model when applying on FPC model.
model is able to create su cient counterfactual exam- The di erence between EPMC and other recommen-
ples to break the correlation of frequently co-occurringdation models is that FPMC is based on Markov chain
items in the input sequence. This indicates the robusthat only considers the last behavior while other mod-
ness of our causal explanation framework in terms ogls involve the whole session information. For FPMC

_#PairgH 20" A Y = Yu)

model delity. model, although we take a session as input to recom-
mend next item, this model actually considers it as a
4.4. Average Causal E ect basket and linearly combines the in uence of each item

from the basket. In this case, every part of the session
We then verify our causal explanations are true expla|| have independent in uence towards next item pre-
nations that explanation are important component forgiction. So changing a small part of input items may not
recommending original item. A common way is to Measijgnj cantly change the next item prediction which high
sure the causal e ect on the outcome of the mod#l.  |ikely results in same recommendation item. Based on
First of all, we show the de nition of Average Causaloyr experiment, when we keep counterfactual histories
E ect. same for all recommendation models, FPMC model only
gets 98 counterfactual histories (19.6%) in average with

Causal E ect (ACE) of a binary random variable on g' (te.rent_trecognmecrildatlon (Idi|1_¢artent fron:}_tlhe rt(;commzn-l
another random variableis de ne asE[yjdo(x = 1)] ation tem based on real nis ory),. while other models
Elyjdo(x = 0)] have at least 315 counterfactual histories (63%) in aver-

age with di erent recommendation item. This di erence

De nition 4. (Average Causal E ect) Théverage



Table 3

Results of Average Causal E ect.
framework is tested under the number of candidate causaEq(3)

explanationsk =

1.

Table 4

Our causal explanatiofResults of Proximity. The value of proximity is calculated by

Dataset Movielens 100k
Dataset Movielens 100k Models FPMC GRU4Rec NARM Caser
Models FPMC GRU4Rec NARM Caser CRAE 22,69 2237 2235 22.40
CR-AE 0.0184 0.1479 0.1108 0.1199 CR-VAE -17.35 -16.88 -16.83 -16.93
CR-VAE 0.0178 0.1862 0.1274 0.1388 Dataset Amazon
Dataset Amazon Models FPMC GRU4Rec NARM Caser
Models FPMC GRU4Rec NARM Caser CRAE 2183 2128 2120 2133
CR-AE 0.0230 0.1150 0.1101 0.1347 CR-VAE -18.01 -17.40 -17.31 -17.51
CR-VAE 0.0212 0.1434 0.1511 0.1563

makes the FPMC model has much lower ACE value com-

pared with other recommendation models. Comparing

our model with CR-AE, the variant model will generate

less similar counterfactual histories which more likely

result in di erent recommendation item than our model.

Therefore, CR-AE has slightly higher ACE values tharta) Model Fidelity on Movielens (b) Model Fidelity on Amazon

CR-VAE.
Figure 3: Model fidelity on di erent time decay parameters

. x-axis is the time decay parameter 2 f 0:1;0:3;0:7; 1g
andy-axis is the model fidelity. The le side pictures are on
al\{lovielensand the right side pictures are oAmazon

4.5. Proximity

As we mentioned before, counterfactual examples th
are closest to the original can be the most useful to users.

Similar with [4g, we de ne the proximity as the distance

between negative counterfactual examples (i.e. generasfactual examples of our model have higher quality and
recommendation item di erent from original item) and be more useful.

original real history. Intuitively, a counterfactual example

that close enough but get totally di erent results willbe 4 6. |Influence of Parameters

more helpful. For a given user, the proximity can be

expressed as In this section, we discuss the in uence of two important
parameters. The rst one is time decay parameter in

our framework, when explaining the sequential recom-
mendation models, earlier interactions in the sequence
will have discounted e ects to the recommended item.
Here the distance is de ned in latent space. The repréh proper time decay parameter helps the framework to
sentation of any history sequence is the concatenatioreduce noise signals when learning patterns from the
of the latent representation of each item in the sequencegquence. The second parameter is the number of per-
The latent representations of items are learned from prdurbed input-output pairsm in our framework, we
trained BPRMF49 model. The distance of any two use perturbations to create counterfactual examples for
sequence is de ned as Euclidean distance between tisgusal learning, but there may exist trade-o between ef-
representation of two sequence. The reported proximityciency and performance. We will analyze the in uence
value would be the average over all users. of these two parameters.

Given that association rule model does not involve Time Decay E ect : Figure 3 shows the in uence of
counterfactual examples, this metric can only be reportedn di erent recommendation models and datasets. From
on our model and the variant model on both datasets, d$e result we can see that the time decay e ectindeed
shown in Table.4 We can observe that our model caf ects the model performance on delity. In particular,
achieve higher proximity compared with the variantwhen is small, the previous interactions in a sequence
model. In other words, counterfactual examples gerare more likely to be ignored, which thus reduces the
erated with learned latent variance is more similar withperformance on model delity. When is large (e.g.,
real history. Therefore, higher proximity implies coun- = 1), old interactions will have equal importance with

Proximity , = mean( dist(F; ;HY)) (3)

Yievy



(a) Model Fidelity on Movielens (b) Model Fidelity on Amazon

Figure 4: Model fidelity on di erent number of counterfac-

tual pairsm. x-axis is the number of counterfactual pairs.

y-axis is model fidelity. Figure 5: A case study on MovieLens by the Caser model.
The first movie foru; is unknown in the dataset.

latest interactions, which also hurts the performance. We
can see from the results that the best performance igives >95% con dence that the estimated probability er-
achieved at about = 0:7 on both datasets. ror is <0.1.
Number of Counterfactual Examples : Figure 4
§hows the in uence for thg number Qf counten.‘actual4.7_ Case Study
input-output pairsm. A basic observation from Figure 4
is that whenm increases, model delity will decrease rst In this section, we provide a simple case study to com-
and then increase. The underlying reason is as followspare causal explanations and association explanations.
Whenm is small, the variance of the counterfactualCompared with the association explanation model, our
input-output pairs will be small, and fewer counterfacmodel is capable of generating personalized explanations,
tual items will be involved. Then the model is more likelywhich means that even if the recommendation model rec-
to select original item as explanation. For example, sugmmends the same item for two di erent users and the
pose the original input-output pair i$\; B;C ! Y. In users have overlapped histories, our model still has the
the extreme case whema = 1, we will have only one potential to generate di erent explanations for di er-
counterfactual pair, e.gA; B;C | Y. According to the entusers. However, the association model will provide
causal rule learning model (section 3.2.2)¢i® Y, then the same explanation since the association rules are ex-
B ) Y will be the causal explanation since the changdracted based on global records. An example by the Caser
of B results in a di erent output, while ifY = Y, then [51] recommendation model oMovieLens10@ataset is
eitherA) Y orC) Y will be the causal explanation shown in Figure 5, where two users with one commonly
since their scores will be higher thaf® or B. In either watched movie The Sound of Musiget exactly same
case, the model delity and percentage of veri ed causafecommendationRulp Fictio). The association model
rules will be100% However, in this case, the results doprovides the overlapped movie as an explanation for the
not present statistical meanings since they are estimateivo di erent users, while our model can generate per-
on a very small amount of examples. sonalized explanation for di erent users even when they
Whenm increases but not large enough, then randongot the same recommendation.
noise examples created by the perturbation model will re-
duce the model delity. Still consider the above examplds, Conclusions
if many pairs with the same outpuY are created, then
the model may nd other items beyond; B;C as the Recommender systems are widely used in our daily life.
cause, which will result in no explanation for the origi-E ective recommendation mechanisms usually work
nal sequence. However, if we continue to increameto  through black-box models, resulting in the lack of trans-
su ciently large numbers, such noise will be statistically parency. In this paper, we extract causal rules from user
o set, and thus the model delity and percentages will history to provide personalized, item-level, post-hoc ex-
increase again. In the most ideal case, we would create glianations for the black-box sequential recommendation
of thejHj " sequences for causal rule learning, wherenodels. The causal explanations are extracted through a
jHj is the number of item slots in the input sequence, angberturbation model and a causal rule learning model. We
jlj is the total number of items in the dataset. Howevergonduct several experiments on real-world datasets, and
jHj i would be a huge number that makes it compuapply our explanation framework to several state-of-the-
tational infeasible for causal rule learning. In practiceart sequential recommendation models. Experimental
we only need to specifyn su ciently large. Based on results veri ed the quality and delity of the causal ex-
ChebyshevV's Inequality, we nd tham = 500 already planations extracted by our framework.
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