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Abstract
State-of-the-art recommender systems have the ability to generate high-quality recommendations, but usually cannot pro-
vide explanations to humans due to the usage of black-box prediction models. The lack of transparency has highlighted the
critical importance of improving the explainability of recommender systems. In this paper, we propose to construct causal
explainable recommendation which aims to provide post-hoc explanations for the recommendations by answering “what
if” questions, e.g., “what would the recommendation result change if the user’s behavior history had been different?” Our
approach first obtains counterfactual user histories and counterfactual recommendation items with the aid of a perturbation
model, and then extracts personalized causal relationships for the recommendation model through a causal rule mining
algorithm. Different from some existing explainable recommendation models that aim to provide persuasive explanations,
our model aims to find out the true explanations for the recommendation of an item. Therefore, in addition to evaluating
the fidelity of discovered causal explanations, we adopt the average causal effect to measure the quality of explanations.
Here by quality we mean whether they are true explanations rather than their persuasiveness. We conduct experiments for
several state-of-the-art sequential recommendation models on real-world datasets to verify the performance of our model
on generating causal explanations.
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1. Introduction
As widely used in decision-making, recommender sys-
tems have been recognized for its ability to provide high-
quality services that reduce the gap between products and
customers. And many state-of-the-art models achieves
outstanding expressiveness by using high-dimensional
user/item representations and deep learning models with
thousands or even millions of parameters [1, 2]. How-
ever, this excessive complexity easily go beyond the com-
prehension of a human who may demand for intuitive
explanations for why the model made a specific decision.
Moreover, providing supportive information and inter-
pretation along with the recommendation can be helpful
for both the customers and the platform, since it improves
the transparency, persuasiveness, trustworthiness, effec-
tiveness, and user satisfaction of the recommendation
systems, while facilitating system designers to refine the
algorithms [3]. Thus, people are looking for solutions
that can generate explanations along with the recommen-
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Figure 1: An example of causal explanation. Comparing the
recommendation of real history and counterfactual histories,
if replacing one certain item will result in the change of rec-
ommendation, the certain item could be the true reason that
the system recommends the original item.

dation.
One typical method to solve explainable recommenda-

tion is to construct a model-intrinsic explanation mod-
ule that also serves as an intermediate recommendation
stage[4, 5]. However, this approach has to redesign the
original recommendation model and thus may sacrifice
model accuracy in order to obtain good explanations
[6]. Moreover, for complex deep models, it is even more
challenging to integrate an explainable method into the
original design while maintaining recommendation per-
formance [3]. In contrast, post-hoc models (a.k.a model-
agnostic explanation) consider the underlying recommen-
dation model as a black-box, and provide explanations
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after the recommendation decision has been made. Al-
though such explanations may not strictly follow the
exact mechanism that generated the corresponding rec-
ommendations, they offer the flexibility to be applied to a
wide range of recommendation models. Furthermore, the
explanation model and recommendation model work sep-
arately, we obtain the benefit of explainability without
hurting the prediction performance.

While it is still not fully understood what informa-
tion is useful to generate the explanations for a certain
recommendation result, Peake [7] argued that one can
provide post-hoc item-level explanations. Specifically, in-
teracted items (the causes) in a user’s history can be used
as explanations for the future item recommendations (the
effect).The authors propose to solve this by association
rule mining which finds co-occurred items as explanation.
However, explanations generated by association rules are
not personalized, i.e., different users would receive the
same explanation as long as the rules are only applied
to their overlapped histories. This makes it incompatible
with modern recommender systems, which aim to pro-
vide personalized services to users. Moreover, we believe
that the true explanation of a recommendation model
should be able to answer the questions like “which item
contribute to the system’s decision?” as well as “ Will
the system change the decision if a different set of items
were purchased by the same user? ” In other words,
the explanation should be aware of the counterfactual
world of the unobserved user histories and their corre-
sponding recommendation when analyzing the cause of
a recommendation in real world.

In this paper, we explore a counterfactual analysis
framework to provide post-hoc causal explanations for
any given black-box sequential recommendation algo-
rithm. Fig.1 shows an example to illustrate our intuition.
Technically, we first create several counterfactual histo-
ries which are different but similar to the real history
through a Variational Auto-Encoder (VAE) based per-
turbation model, and obtain the recommendation for
the counterfactual data. Then we apply causal analysis
on the combined data to extract causal rules between a
user’s history and future behaviors as explanations. Un-
like other explainable recommendation models [4, 8, 9]
that focus on persuading users to keep engaged with
the system, this type of explanation focuses on model
transparency and finds out the true reason or the most
essential item that leads to a specific recommendation.
Therefore, instead of taking user studies or online evalu-
ations to evaluate the persuasiveness or effectiveness of
explanations, we use the average causal effect to measure
whether the item used for explanation can explain how
the system works.

The key contributions of this paper are as follows:

• We design and study a counterfactual explain-

able framework for a wide range of sequential
recommendations.

• We show that this framework can generate per-
sonalized post-hoc explanations based on item-
level causal rules.

• We conduct several experiments on real-world
data to demonstrate that our explanation model
outperforms state-of-the-art baselines in terms of
fidelity.

• We apply average causal effect to illustrate that
the causal explanations provided by our frame-
work are essential component for most sequential
recommendation model.

For the remainder of this paper, we first review related
work in Section 2, and then introduce our model in Sec-
tion 3. Experimental settings and results are provided in
Section 4. Finally, we conclude this work in Section 5.

2. Related Work

2.1. Sequential Recommendation
Sequential recommendation takes into account the his-
torical order of items interacted by a user and aims to
capture useful sequential patterns to make consecutive
predictions of the user’s future behaviors. Rendle et al.
[10] proposed Factorized Personalized Markov Chains
(FPMC) to combine Markov chain and matrix factoriza-
tion for next basket recommendation. The Hierarchical
Representation Model (HRM) [11] further extended this
idea by leveraging representation learning as latent fac-
tors in a hierarchical model. However, these methods can
only model the local sequential patterns of very limited
number of adjacent records. To model multi-step sequen-
tial behaviors, He et al. [12] adopted Markov chain to
provide recommendations with sparse sequences. Later
on, the rapid development of representation learning
and neural networks introduced many new techniques
that further pushed the research of sequential recom-
mendation to a new level. For example, Hidasi et. al.
[13] used an RNN-based model to learn the user his-
tory representation, Yu et. al. [14] provided a dynamic
recurrent model, Li et. al. [15] proposed an attention-
based GRU model, Chen et. al. [16] developed user- and
item-level memory networks, and Huang et. al. [17] fur-
ther integrated knowledge graphs into memory networks.
However, most of the models exhibit complicated neural
network architectures, and it is usually difficult to inter-
pret their prediction results. To make up for this, we plan
to generate explanations for these black box sequential
recommendation models.



2.2. Explainable Recommendation

Explainable recommendation focuses on developing mod-
els that can generate not only high-quality recommen-
dations but also intuitive explanations, which help to
improve the transparency of the recommendation sys-
tems [3]. Generally, the explainable models can be either
model-intrinsic or model-agnostic. As for model-intrinsic
approaches, lots of popular explainable recommendation
methods, such as factorization models [4, 18, 9, 19], deep
learning models [20, 16, 21, 22], knowledge graph models
[23, 5, 17, 24, 25, 26], explanation ranking models [27],
logical reasoning models [1, 28, 29], dynamic explana-
tion models [30, 31], visual explanation models [8] and
natural language generation models [32, 33, 34] have
been proposed. A more complete review of the related
models can be seen in [3]. However, they mix the recom-
mendation mechanism with interpretable components,
which often results in over-complicated systems to make
successful explanations. Moreover, the increased model
complexity may reduce the interpretability. A natural
way to avoid this dilemma is to rely on model-agnostic
post-hoc approaches so that the recommendation system
is free from the noises of the down-stream explanation
generator. Examples include [35] that proposed a bandit
approach, [36] that proposed a reinforcement learning
framework to generate sentence explanations, and [7]
that developed an association rule mining approach. Ad-
ditionally, some work distinguish the model explanations
by their purpose [37]: while persuasive explanations aim
to improve user engagement, model explanation re�exes
how the system really works and may not necessarily be
persuasive. Our study fall into the later case and aims
to �nd causal explanations for a given sequential recom-
mendation model.

2.3. Causal Inference in Recommendation

Originated as statistical problems, causal inference [38,
39] aims at understanding and explaining the causal ef-
fect of one variable on another. While the observational
data is considered as the factual world, causal e�ect in-
ferences should be aware of the counterfactual world,
thus often being regarded as the questions of "what-if".
The challenge is that it is often expensive or even im-
possible to obtain counterfactual data. For example, it
is immoral to re-do the experiment on a patient to �nd
out what will happen if we have not given the medicine.
Though the majority of causal inference study resides in
the direction of statistics and philosophy, it has recently
attracted the attention from AI community for its great
power of explainablity and bias elimination ability. Ef-
forts have managed to bring causal inference to several
machine learning areas, including recommendation [40],
learning to rank [41], natural language processing [42],

and reinforcement learning [43], etc. With respect to
recommendation tasks, large amount of work is about
how to achieve de-bias matrix factorization with causal
inference. The probabilistic approach ExpoMF proposed
in [44] directly incorporated user exposure to items into
collaborative �ltering, where the exposure is modeled as
a latent variable. Liang et. al. [45] followed to develop
a causal inference approach to recommender systems
which believed that the exposure and click data came
from di�erent models, thus using the click data alone to
infer the user preferences would be biased by the expo-
sure data. They used causal inference to correct for this
bias for improving generalization of recommendation
systems to new data. Bonner et. al. [40] proposed a new
domain adaptation algorithm which was learned from
logged data including outcomes from a biased recom-
mendation policy, and predicted recommendation results
according to random exposure. Besides de-bias recom-
mendation, Ghazimatin et. al. [46] proposed PRINCE
model to explore counterfactual evidence for discovering
causal explanations in a heterogeneous information net-
work. Di�erently, this paper focuses on learning causal
rules to provide more intuitive explanation for the black-
box sequential recommendation models. Additionally,
we consider [47] as a highly related work though it is
originally proposed for natural language processing tasks.
As we will discuss in the later sections, we utilize some
of the key ideas of its model construction, and show why
it works in sequential recommendation scenarios.

3. Proposed Approach

In this section, we �rst de�ne the explanation problem
and then introduce our model as a combination of two
parts: a VAE-based perturbation model that generates the
counterfactual samples for causal analysis, and a causal
rule mining model that can extract causal dependencies
between the cause-e�ect items.

3.1. Problem Setting

We denote the set of users asU = f u1 ; u2 ; � � � ; ujUj g
and set of items asI = f i 1 ; i 2 : � � � ; i jIj g. Each useru
is associated with a purchase history represented as a
sequence of itemsH u . Thej -th interacted item in the
history is denoted asH u

j 2 I . Without speci�cation, the
calligraphicH in the paper represents user history, and
a straightH represents an item. A black-box sequential
recommendation modelF : H ! I is a function that
takes a sequence of items (as will discuss later, it can be
the counterfactual user history) as input and outputs the
recommended item. In practice, the underlying mecha-
nism usually consists of two steps: a ranking function
�rst scores all candidate items based on the user history,



and then it selects the item with the highest score as the
�nal output. Note that it only uses user-item interac-
tion without any content or context information, and the
scores predicted by the ranking function may di�er ac-
cording to the tasks (e.g.f 1; : : : ; 5g for rating prediction,
while [0; 1] for Click Through Rate (CTR) prediction).
Our goal is to �nd an item-level post-hoc model that cap-
tures the causal relation between the history items and
the recommended item for each user.

De�nition 1. (Causal Relation) For two variablesX and
Y , if X triggersY , then we say that there is a causal re-
lation X ) Y , whereX is thecauseandY is thee�ect .

When a given recommendation modelF maps a user
history H u to a recommended itemY u 2 I , all items
in H u are considered as potential causes ofY u . Thus
we can formulate the set of causal relation candidates as
Su = f (H; Y u )jH 2 H u g.

De�nition 2. (Causal Explanation for Sequential Rec-
ommendation Model) Given a causal relation candidate
setSu for useru, if there exists a true causal relation
(H; Y u ) 2 S u , then the causal explanation for recom-
mendingY u is described as �Because you purchasedH ,
the model recommends youY u �, denoted asH ) Y u .

Then the remaining problem is to determine whether
a candidate pair is a true causal relation.

We can mitigate the problem by allowing a likelihood
estimation for a candidate pair being a causal relation.

De�nition 3. (Causal Dependency) For a given candi-
date pair of causal relation(H; Y u ), the causal depen-
dency� H;Y u of that pair is the likelihood of the pair being
a true causal relation.

In other words, we would like to �nd a ranking func-
tion that predicts the likelihood for each candidate pair,
and the causal explanation is generated by selecting the
pair with top ranking score from these candidates. One
advantage of this formulation is that it allows the possibil-
ity of giving no causal relation between a user's history
and the recommended item, e.g., when algorithm rec-
ommends the most popular items regardless of the user
history.

3.2. Causal Model for Post-Hoc Explanation

In this section, we introduce our counterfactual explana-
tion framework for recommendation. Inspired by [47],
we divide our framework into two models: a perturbation
model and a causal rule mining model. The overview of
the model framework is shown in Fig.2.

3.2.1. Perturbation Model

To capture the causal dependency between items in his-
tory and the recommended items, we want to know what
would take place if the user history had been di�erent. To
avoid unknown in�uences caused by the length of input
sequence (i.e., user history), we keep the input length
unchanged, and only replace items in the sequence to
create counterfactual histories. Ideally, for each item
H u

j in a user's historyH u , it will be replaced by all pos-
sible items inI to fully explore the in�uence thatH u

j

makes in the history. However, the number of possible
combinations will become impractical for the learning
system, since recommender systems usually deal with
hundreds of thousands or even tens of millions items. In
fact, counterfactual examples that are closest to the orig-
inal input can be the most useful to a user as shown in
[48]. Therefore, we pursue a perturbation-based method
that generate counterfactual examples, which replaces
items in the original user historyH u .

There are various ways to obtain the counterfactual
history, as long as they are similar to the real history.
The simplest solution is randomly selecting an item in
H u and replacing it with a randomly selected item from
I n H u . However, user histories are far from random.
Thus, we assume that their exists a ground truth user
history distribution, and we adopt VAE to learn such a dis-
tribution. As is shown in Figure 2, we design a VAE-based
perturbation method, which creates item sequences that
are similar to but slightly di�erent from a user's genuine
history sequence, by sampling from a distribution in the
latent embedding space centered around the user's true
history sequence.

In detail, the VAE component consists of a probabilis-
tic encoder(�; � ) = ENC( X ) and a decoderX~ =
DEC( z). The encoderENC( �) takes a sequence of item
embeddingsX into latent embedding space, and extracts
the variational information for the sequence, i.e., mean
and variance of the latent embeddings under independent
Gaussian distribution. The decoderDEC( �) generates a
sequence of item embeddingsX~ given a latent embed-
ding z sampled from the Gaussian distribution. Here,
both X andX~ are ordered concatenations of pre-trained
item embeddings based on pair-wise matrix factorization
(BPR-MF) [49]. We follow the standard training regime
of VAE by maximizing the variational lower bound of the
data likelihood [50]. Speci�cally, the reconstruction error
involved in this lower bound is calculated by a softmax
across all items for each position of the input sequence.
We observe that VAE can reconstruct the original data
set accurately, while o�ering the power of perturbation.

After pretrainingENC( �) andDEC( �), the variational
nature of this model allows us to obtain counterfactual
history H~ for any real historyH . More speci�cally, it
�rst extracts the mean and variance of the encoded item



Figure 2: Model framework.x is the concatenation of the item embeddings of the user history.x~ is the perturbed embedding.

sequences in the latent space, and then the perturbation
model samplesm latent embeddingsz based on the above
variational information. These sampled embeddingsz
are then passed to the decoderDEC( �) to obtain the
perturbed versionsX~. For now, each item embedding in
X~ may not represent an actual item since it is a sampled
vector from the latent space, as a result, we �nd its nearest
neighbor in the candidate item setI n H through dot
product similarity as the actual item. In this way,X~ is
transformed into the �nal counterfactual historyH~. One
should keep in mind that the variance should be kept
small during sampling, so that the resulting sequences
can be similar to the original sequence.

Finally, the generated counterfactual dataH~ together
with the original H will be injected into the black-box
recommendation modelF to obtain the recommenda-
tion resultsY~ andY , correspondingly. For any useru,
after completing this process, we will havem di�erent
counterfactual input-output pairs:f (H~

u
i ; Y~

u
i )gm

i =1 , as
well as the original pair(H u ; Y u ). Here the value ofm
is manually set, but it cannot exceed the number of all
possible item combinations.

3.2.2. Causal Rule Learning Model

DenoteDu as the combined records of counterfactual
input-output pairsf (H~

u
i ; Y~

u
i )gm

i =1 and the original pair
(H u ; Y u ) for useru. We aim to develop a causal model
that �rst extracts causal dependencies between input and
outputs items appeared inDu , and then selects the causal
rule based on these inferred causal dependencies.

LetĤ
u
i = [ Ĥ

u
i 1 ; Ĥ

u
i 2 ; � � � ; Ĥ

u
in ] be the input sequence

of the i -th record ofDu , whereĤ
u
ij is the j-th item in

Ĥ
u
i . Let Ŷ

u
i represent the corresponding output. Note

that this includes the original real pair(H u ; Y u ). The
model should be able to infer the causal dependency
(refer to De�nition 3) � Ĥ u

ij ;Ŷ u
i

between input itemĤ
u
ij

and output itemŶ
u
i . We consider that the occurrence of

a single output can be modeled as a logistic regression
on causal dependencies from all the input items in the
sequence:

P (Ŷ
u
i jĤ

u
i ) = �

� nX

j =1

� Ĥ u
ij ;Ŷ u

i
� 
 n � j

�
(1)

where � is the sigmoid function de�ned as� (x) =
(1 + exp( � x)) � 1 in order to scale the score to[0; 1].
Additionally, in recommendation task, the order of a
user's previously interacted items may a�ect their causal
dependency with the user's next interaction. A closer
behavior tends to have a stronger e�ect on user's future
behaviors, and behaviors are discounted if they happened
earlier [13]. Therefore, we involve a weight decay param-
eter 
 to represent the time e�ect. Here
 is a positive
value less than one.

For an input-output pair inDu , the probability of its
occurrence generated by Eq.(1)should be close to one.
As a result, we learn the causal dependencies� by maxi-
mizing the probability overDu . When optimizing� , they
are always initialized as zero to allow for no causation
between two items. When learning this regression model,
we are able to gradually increase� until they converge to
the point where the data likelihood ofDu is maximized.

After gathering all the causal dependencies, we select
the items that have high� scores to build causal explana-
tions. This involves a three-step procedure.

1. We select those causal dependencies� Ĥ u
ij ;Ŷ u

i

whose output is the originalY u (i.e.,Ŷ
u
i = Y u ).

Note that these(Ĥ
u
ij ; Y u ) pairs may come from

either the original sequence or counterfactual se-
quences, because when a counterfactual sequence
is fed into the black-box recommendation model,
the output may happen to be the same as the
original sequenceY u .



Algorithm 1 Causal Explanation Model

Input: usersU, itemsI , user historyH u ,
counterfactual numberm, black-box modelF ,
embedding modelE, causal mining modelM
Output: causal explanationsH ) Y u whereH 2 H u

1: Use embedding modelE to get item embeddingsE(I )

2: UseE(I ) and true user history to train perturbation
modelP

3: for each useru do
4: for i from 1 to m do
5: H~

u
i  P (H u ); Y~

u
i  F (H~

u
i )

6: end for
7: Construct counterfactual input-output pairs

f (H~
u
i ; Y~

u
i )gm

i =1

8: f (Ĥ
u
i ; Ŷ

u
i )gm +1

i =1  f (H~
u
i ; Y~

u
i )gm

i =1 [ (H u ; Y u )

9: � Ĥ u
ij ;Ŷ u

i
 M

�
f (Ĥ

u
i ; Ŷ

u
i )gm +1

i =1

�

10: Rank � Ĥ u
ij ;Y u and select top-k pairs

f (H j ; Y u )gk
j =1

11: if 9H min f j g 2 H u then
12: Generate causal explanationH min f j g ) Y u

13: else
14: No explanation for the recommended itemY u

15: end if
16: end for
17: return all causal explanationsH ) Y u

2. We sort the above selected causal dependencies
in descending order and take the top-k (Ĥ

u
ij ; Y u )

pairs.
3. If there exist one or more pairs in these top-k

pairs, which cause itemĤ
u
ij appears in the user's

input sequenceH u , then we pick such pair of the
highest rank, and constructĤ

u
ij ) Y u as the

causal explanation for the user. Otherwise, i.e.,
no cause item appears in the user history, then
we output no causal explanation for the user.

Note that the extracted causal explanation is personal-
ized since the algorithm is applied onDu , which only con-
tains records centered around the user's original record
(H u ; Y u ), while collaborative learning among users is
indirectly modeled by the VAE-based perturbation model.
The overall algorithm is provided in Alg.1. For each user,
there are two phases - perturbation phase (line 4-7) and
causal rule mining phase (line 8-15).

4. Experiments

In this section, we conduct experiments to show what
causal relationships our model can capture and how they

Table 1
Summary of the Datasets

Dataset # users # items # interactions # train # test sparsity

Movielens 943 1682 100,000 95,285 14,715 6.3%
Amazon 573 478 13,062 9,624 3,438 4.7%

can serve as an intuitive explanation for the black-box
recommendation model.

4.1. Dataset Description

We evaluate our proposed causal explanation framework
against baselines on two datasets. The �rst dataset is
MovieLens100k1. This dataset consists of information
about users, movies and ratings. In this dataset, each user
has rated at least 20 movies, and each movie can belong to
several genres. The second dataset is the o�ce product
dataset from Amazon2, which contains the user-item
interactions from May 1996 to July 2014. The original
dataset is 5-core. To achieve sequential recommendation
with input length of 5, we select the users with at least
15 purchases and the items with at least 10 interactions.

Since our framework is used to explain sequential rec-
ommendation models, we split the dataset chronologi-
cally. Further, to learn the pre-trained item embeddings
based on BPR-MF [49] (section 3.2.1), we take the last
6 interactions from each user to construct the testing
set, and use all previous interactions from each user as
the training set. To avoid data leakage, when testing the
black-box recommendation models and our VAE-based
perturbation model, we only use the last 6 interactions
of each user (i.e., the testing set of the pre-training stage).
Following common practice, we adopt the leave-one-out
protocol, i.e., among the 6 interactions in test set, we use
the last one for testing, and the previous �ve interactions
will serve as input to the recommendation models. A
brief summary of the data is shown in Table 1.

4.2. Experimental Settings

We adopt the following methods to train black-box se-
quential recommendation models and extract traditional
association rules as comparative explanations. Mean-
while, we further conduct di�erent variants of the per-
turbation model to analyze our model. We include both
shallow and deep models for the experiment.

FPMC [10]: The Factorized Personalized Markov
Chain model, which combines matrix factorization and
Markov chains to capture user's personalized sequential
behavior patterns for prediction3.

1https://grouplens.org/datasets/movielens/
2https://nijianmo.github.io/amazon/
3https://github.com/khesui/FPMC



Table 2
Results of Model Fidelity. Our causal explanation framework is tested under the number of candidate causal explanations
k = 1 . The association explanation framework is tested under support, confidence, and li� thresholds, respectively. The best
fidelity on each column is highlighted in bold.

Dataset Movielens 100k Amazon

Models FPMC GRU4Rec NARM Caser FPMC GRU4Rec NARM Caser

AR-sup 0.3160 0.1453 0.4581 0.1569 0.2932 0.1449 0.4066 0.2024
AR-conf 0.2959 0.1410 0.4305 0.1559 0.2949 0.1449 0.4031 0.1885
AR-li� 0.2959 0.1410 0.4305 0.1559 0.2949 0.1449 0.4031 0.1885

CR-AE 0.5631 0.7413 0.7084 0.6151 0.6981 0.8255 0.8970 0.7260
CR-VAE 0.9650 0.9852 0.9714 0.9703 0.9511 0.9721 0.9791 0.9599

GRU4Rec [13]: A session-based recommendation
model, which uses recurrent neural networks � in partic-
ular, Gated Recurrent Units (GRU) � to capture sequential
patterns for prediction4.

NARM [15]: A sequential recommendation model
which utilizes GRU and attention mechanism to estimate
the importance of each interactions5.

Caser [51]: The ConvolutionAl Sequence Embedding
Recommendation (Caser) model, which adopts convo-
lutional �lters over recent items to learn the sequential
patterns for prediction6.

AR-sup [7]: A post-hoc explanation model, which
extract association rules from interactions from all users
and rank based on support value to generate item-level
explanations.

AR-conf [7]: Extracting association rules and rank
based on con�dence value to get explanations.

AR-lift [7]: Rank based on lift value among extracted
association rules to generate explanations.

CR-AE: A variant of our causal rule model which
applies �xed variance in hidden layer of AutoEncoder
model as the perturbation model. Compared with our
VAE-based perturbation model, this variant apply non-
personalized variance.

For black-box recommendation models FPMC,
GRU4Rec, NARM and Caser, we adopt their best
parameter selection in their corresponding public imple-
mentation. For the association rule-based explanation
model, we follow the recommendations in [7] to set
the optimal parameters: support = 0.1, con�dence
= 0.1, lift = 0.1, length = 2 forMovieLens100k, and
support = 0.01, con�dence = 0.01, lift = 0.01, length
= 2 for Amazondataset due to its smaller scale. We
accept top 100 rules based on corresponding values (i.e.
support/con�dence/lift) as explanations

For our causal rule learning framework, we set the
item embedding size as 16, both the VAE encoder and

4https://github.com/hungthanhpham94/GRU4REC-pytorch
5https://github.com/Wang-Shuo/Neural-Attentive-Session-

Based-Recommendation-PyTorch
6https://github.com/graytowne/caser_pytorch

decoder are Multi-Layer Perceptrons (MLP) with two
hidden layers, and each layer consists of 1024 neurons.
The only di�erence between our model and the vari-
ant model CR-AE is that the variant model applies �xed
normal distribution as variance instead of learned person-
alized variance. The default number of counterfactual
input-output pairs ism = 500 on both datasets. The
default time decay factor is
 = 0 :7. We will discuss the
in�uence of counterfactual numberm and time decay
factor 
 in the experiments.

In the following, we will apply our model and all base-
lines on the black-box recommendation models to evalu-
ate and compare the generated explanations. In particu-
lar, we evaluate our framework from three perspectives.
First, a explanation model should at least be able to o�er
explanations for most recommendations, we will show it
in the result (explanation �delity). Second, if our model is
capable of generating explanations for most recommen-
dations, we need to verify that the causal explanations
learned by our framework represent the key component
of recommendation mechanism (explanation quality). Fi-
nally, since counterfactual examples are involved in our
framework, our framework should be able to generate
closer counterfactual examples (counterfactual quality).
Additionally, we shed light on how our model di�ers
from other models on statistical metrics.

4.3. Model Fidelity

A very basic purpose of designing a explanation model
is to generate explanations for most recommendations.
Therefore, an important evaluation measure for explana-
tion models is model �delity, i.e., what's the percentage
of the recommendation results can be explained by the
model [3]. The results of model �delity are shown in
Table 2. In this experiment, we only report the results of
keeping the number of candidate causal explanationsk
as 1 for our framework and variant. For the association
rule explanation model (section 4.2), we apply the global
association rules [7] ranking by support, con�dence, and
lift, respectively.



We can see that on both datasets, our causal explana-
tion framework is able to generate explanations for most
of the recommended items (including the variant), while
the association explanation approach can only provide ex-
planations for signi�cantly fewer recommendations. The
underlying reason is that association explanations have
to be extracted based on the original input-output pairs,
which limits the number of pairs that we can use for rule
extraction. However, based on the perturbation model,
our causal explanation framework is capable of creating
many counterfactual examples to assist causal rule learn-
ing, which makes it possible to go beyond the limited
original data to extract causal explanations. Moreover,
when the number of input and output items are limited
(e.g. �ve history items as input and the model recom-
mends only one item in our case), it is harder to match
global rules with personal interactions and recommen-
dation, which limits the �exibility of global association
rules.

Another interesting observation is that GRU4Rec and
Caser have signi�cantly (p < 0:01) lower �delity than
FPMC and NARM when explained by the association
model. This is reasonable because FPMC is a Markov-
based model that consider input as a basket and directly
learns the correlation between candidate items and each
items in a sequence, as a result, it is easier to extract asso-
ciation rules between inputs and outputs for the model.
NARM combines the whole session information and in-
�uence of each individual item in the session, therefore,
association rules which involve individual information
will be easier to be extracted for this model. However,
it also means that the �delity performance of the asso-
ciation approach highly depends on the recommenda-
tion model being explained. Meanwhile, we see that our
causal approach achieves comparably good �delity on all
three recommendation models, because the perturbation
model is able to create su�cient counterfactual exam-
ples to break the correlation of frequently co-occurring
items in the input sequence. This indicates the robust-
ness of our causal explanation framework in terms of
model �delity.

4.4. Average Causal E�ect

We then verify our causal explanations are true expla-
nations that explanation are important component for
recommending original item. A common way is to mea-
sure the causal e�ect on the outcome of the model[52].
First of all, we show the de�nition of Average Causal
E�ect.

De�nition 4. (Average Causal E�ect) TheAverage
Causal E�ect (ACE) of a binary random variablex on
another random variabley is de�ne asE[yjdo(x = 1)] �
E[yjdo(x = 0)]

Heredo() represents an external intervention, which
forces a variable to take a speci�c value. Speci�cally, in
our case, for an extracted causal ruleH ) Y u , we de�ne
the binary random variable as 1 ifH 2 H~

u
i , 0 else. We

also de�ne another variabley as a binary random variable,
which is 1 if Y~

u
i = Yu , otherwise it will be 0. We then

report average ACE on all generated explanations. Note
that since the ACE value is used for causal related models,
we cannot report it on the association rule baseline.

Suppose the perturbation model (section 3.2.1) cre-
atesm counterfactual input-output pairs for each useru:
f (H~

u
i ; Y~

u
i )gm

i =1 . HereH~
u

is created by our perturbation
model (i.e. not observed in the original data), and thus
observingH 2 H~

u
implies we havedo(x = 1) in ad-

vance. LetH ) Y u be the causal explanation extracted
by the casual rule learning model (section 3.2.2). Then
we estimate the ACE based on thesem counterfactual
pairs as,

E[yjdo(x = 1)] = Pr( y = 1 jdo(x = 1))

=
# Pairs(H 2 H~

u
^ Y = Y u )

# Pairs(H 2 H~
u

)

E[yjdo(x = 0)] = Pr( y = 1 jdo(x = 0))

=
# Pairs(H =2 H~

u
^ Y = Y u )

# Pairs(H =2 H~
u

)

(2)

We report the ACE value of our model and variants in
Table.3. While showing the ACE value, we still keep the
number of candidate causal explanationsk as 1.

We can see that our model can achieve higher ACE
value than the variant for most recommendation models
on both dataset. But here we can observe an interesting
results that the ACE value for FPMC model is much lower
than other recommendation models (GRU4Rec, NARM,
Caser). Meanwhile, the variant model has slightly larger
ACE than our model when applying on FPC model.

The di�erence between FPMC and other recommen-
dation models is that FPMC is based on Markov chain
that only considers the last behavior while other mod-
els involve the whole session information. For FPMC
model, although we take a session as input to recom-
mend next item, this model actually considers it as a
basket and linearly combines the in�uence of each item
from the basket. In this case, every part of the session
will have independent in�uence towards next item pre-
diction. So changing a small part of input items may not
signi�cantly change the next item prediction which high
likely results in same recommendation item. Based on
our experiment, when we keep counterfactual histories
same for all recommendation models, FPMC model only
gets 98 counterfactual histories (19.6%) in average with
di�erent recommendation (di�erent from the recommen-
dation item based on real history), while other models
have at least 315 counterfactual histories (63%) in aver-
age with di�erent recommendation item. This di�erence



Table 3
Results of Average Causal E�ect. Our causal explanation
framework is tested under the number of candidate causal
explanationsk = 1 .

Dataset Movielens 100k

Models FPMC GRU4Rec NARM Caser

CR-AE 0.0184 0.1479 0.1108 0.1199
CR-VAE 0.0178 0.1862 0.1274 0.1388

Dataset Amazon

Models FPMC GRU4Rec NARM Caser

CR-AE 0.0230 0.1150 0.1101 0.1347
CR-VAE 0.0212 0.1434 0.1511 0.1563

makes the FPMC model has much lower ACE value com-
pared with other recommendation models. Comparing
our model with CR-AE, the variant model will generate
less similar counterfactual histories which more likely
result in di�erent recommendation item than our model.
Therefore, CR-AE has slightly higher ACE values than
CR-VAE.

4.5. Proximity

As we mentioned before, counterfactual examples that
are closest to the original can be the most useful to users.
Similar with [48], we de�ne the proximity as the distance
between negative counterfactual examples (i.e. generate
recommendation item di�erent from original item) and
original real history. Intuitively, a counterfactual example
that close enough but get totally di�erent results will be
more helpful. For a given user, the proximity can be
expressed as

P roximity u = � mean(
X

Y~ u
i 6= Yu

dist (H~
u
i ; H u )) (3)

Here the distance is de�ned in latent space. The repre-
sentation of any history sequence is the concatenation
of the latent representation of each item in the sequence.
The latent representations of items are learned from pre-
trained BPRMF [49] model. The distance of any two
sequence is de�ned as Euclidean distance between the
representation of two sequence. The reported proximity
value would be the average over all users.

Given that association rule model does not involve
counterfactual examples, this metric can only be reported
on our model and the variant model on both datasets, as
shown in Table.4 We can observe that our model can
achieve higher proximity compared with the variant
model. In other words, counterfactual examples gen-
erated with learned latent variance is more similar with
real history. Therefore, higher proximity implies coun-

Table 4
Results of Proximity. The value of proximity is calculated by
Eq.(3)

Dataset Movielens 100k

Models FPMC GRU4Rec NARM Caser

CR-AE -22.69 -22.37 -22.35 -22.40
CR-VAE -17.35 -16.88 -16.83 -16.93

Dataset Amazon

Models FPMC GRU4Rec NARM Caser

CR-AE -21.83 -21.28 -21.20 -21.33
CR-VAE -18.01 -17.40 -17.31 -17.51

(a) Model Fidelity on Movielens (b) Model Fidelity on Amazon

Figure 3: Model fidelity on di�erent time decay parameters

 . x-axis is the time decay parameter
 2 f 0:1; 0:3; 0:7; 1g
and y-axis is the model fidelity. The le� side pictures are on
Movielensand the right side pictures are onAmazon.

terfactual examples of our model have higher quality and
be more useful.

4.6. Influence of Parameters

In this section, we discuss the in�uence of two important
parameters. The �rst one is time decay parameter
 � in
our framework, when explaining the sequential recom-
mendation models, earlier interactions in the sequence
will have discounted e�ects to the recommended item.
A proper time decay parameter helps the framework to
reduce noise signals when learning patterns from the
sequence. The second parameter is the number of per-
turbed input-output pairsm � in our framework, we
use perturbations to create counterfactual examples for
causal learning, but there may exist trade-o� between ef-
�ciency and performance. We will analyze the in�uence
of these two parameters.

Time Decay E�ect : Figure 3 shows the in�uence of

on di�erent recommendation models and datasets. From
the result we can see that the time decay e�ect
 indeed
a�ects the model performance on �delity. In particular,
when 
 is small, the previous interactions in a sequence
are more likely to be ignored, which thus reduces the
performance on model �delity. When
 is large (e.g.,

 = 1 ), old interactions will have equal importance with



(a) Model Fidelity on Movielens (b) Model Fidelity on Amazon

Figure 4: Model fidelity on di�erent number of counterfac-
tual pairsm . x-axis is the number of counterfactual pairsm .
y-axis is model fidelity.

latest interactions, which also hurts the performance. We
can see from the results that the best performance is
achieved at about
 = 0 :7 on both datasets.

Number of Counterfactual Examples : Figure 4
shows the in�uence for the number of counterfactual
input-output pairsm. A basic observation from Figure 4
is that whenm increases, model �delity will decrease �rst
and then increase. The underlying reason is as follows.

Whenm is small, the variance of the counterfactual
input-output pairs will be small, and fewer counterfac-
tual items will be involved. Then the model is more likely
to select original item as explanation. For example, sup-
pose the original input-output pair isA; B; C ! Y . In
the extreme case wherem = 1 , we will have only one
counterfactual pair, e.g.,A; B~; C ! Y~. According to the
causal rule learning model (section 3.2.2), ifY~ 6= Y , then
B ) Y will be the causal explanation since the change
of B results in a di�erent output, while ifY~ = Y , then
either A ) Y or C ) Y will be the causal explanation
since their� scores will be higher thanB or B~. In either
case, the model �delity and percentage of veri�ed causal
rules will be100%. However, in this case, the results do
not present statistical meanings since they are estimated
on a very small amount of examples.

Whenm increases but not large enough, then random
noise examples created by the perturbation model will re-
duce the model �delity. Still consider the above example,
if many pairs with the same outputY are created, then
the model may �nd other items beyondA; B; C as the
cause, which will result in no explanation for the origi-
nal sequence. However, if we continue to increasem to
su�ciently large numbers, such noise will be statistically
o�set, and thus the model �delity and percentages will
increase again. In the most ideal case, we would create all
of the jHj jIj sequences for causal rule learning, where
jHj is the number of item slots in the input sequence, and
jIj is the total number of items in the dataset. However,
jHj jIj would be a huge number that makes it compu-
tational infeasible for causal rule learning. In practice,
we only need to specifym su�ciently large. Based on
Chebyshev's Inequality, we �nd thatm = 500 already

Figure 5: A case study on MovieLens by the Caser model.
The first movie foru1 is unknown in the dataset.

gives >95% con�dence that the estimated probability er-
ror is <0.1.

4.7. Case Study

In this section, we provide a simple case study to com-
pare causal explanations and association explanations.
Compared with the association explanation model, our
model is capable of generating personalized explanations,
which means that even if the recommendation model rec-
ommends the same item for two di�erent users and the
users have overlapped histories, our model still has the
potential to generate di�erent explanations for di�er-
ent users. However, the association model will provide
the same explanation since the association rules are ex-
tracted based on global records. An example by the Caser
[51] recommendation model onMovieLens100kdataset is
shown in Figure 5, where two users with one commonly
watched movie (The Sound of Music) get exactly same
recommendation (Pulp Fiction). The association model
provides the overlapped movie as an explanation for the
two di�erent users, while our model can generate per-
sonalized explanation for di�erent users even when they
got the same recommendation.

5. Conclusions

Recommender systems are widely used in our daily life.
E�ective recommendation mechanisms usually work
through black-box models, resulting in the lack of trans-
parency. In this paper, we extract causal rules from user
history to provide personalized, item-level, post-hoc ex-
planations for the black-box sequential recommendation
models. The causal explanations are extracted through a
perturbation model and a causal rule learning model. We
conduct several experiments on real-world datasets, and
apply our explanation framework to several state-of-the-
art sequential recommendation models. Experimental
results veri�ed the quality and �delity of the causal ex-
planations extracted by our framework.


	1 Introduction
	2 Related Work
	2.1 Sequential Recommendation
	2.2 Explainable Recommendation
	2.3 Causal Inference in Recommendation

	3 Proposed Approach
	3.1 Problem Setting
	3.2 Causal Model for Post-Hoc Explanation
	3.2.1 Perturbation Model
	3.2.2 Causal Rule Learning Model


	4 Experiments
	4.1 Dataset Description
	4.2 Experimental Settings
	4.3 Model Fidelity
	4.4 Average Causal Effect
	4.5 Proximity
	4.6 Influence of Parameters
	4.7 Case Study

	5 Conclusions

