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Abstract
We build and publicize the Open Bandit Dataset and Pipeline to facilitate scalable and reproducible research on bandit algo-
rithms. They are especially suitable for off-policy evaluation (OPE), which attempts to predict the performance of hypothetical
algorithms using data generated by a different algorithm. We construct the dataset based on experiments and implementa-
tions on a large-scale fashion e-commerce platform, ZOZOTOWN. The data contain the ground-truth about the performance
of several bandit policies and enable the fair comparisons of different OPE estimators.

1. Introduction
Interactive bandit and reinforcement learning systems
produce log data valuable for evaluating and redesigning
the systems. For example, the logs of a news recommen-
dation system record which news article was presented
and whether the user read it, giving the system designer
a chance to make its recommendation more relevant.
Exploiting log data is, however, more difficult than con-
ventional supervised machine learning: the result is only
observed for the action chosen by the system but not for
all the other actions the system could have taken. The
logs are also biased in that the logs over-represent the
actions favored by the system.

A potential solution to this problem is an A/B test that
compares the performance of counterfactual systems in
an online environment. However, A/B testing counter-
factual systems is often difficult, since deploying a new
policy is time- and money-consuming, and entails a risk
of failure.

This leads us to the problem of off-policy evaluation
(OPE), which aims to estimate the performance of a coun-
terfactual policy using only log data collected by a past
(or behavior) policy. Such an evaluation allows us to
compare the performance of candidate counterfactual
policies to decide which policy should be deployed. This
alternative approach thus solves the above problem with
the A/B test approach. Applications range from contex-
tual bandits [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] and reinforcement
learning in the web industry [11, 12, 13, 14, 15, 16, 17] to
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other social domains such as healthcare [18] and educa-
tion [19].

While the research community has produced theoreti-
cal breakthroughs, the experimental evaluation of OPE
remains primitive. Specifically, it lacks a public bench-
mark dataset for comparing the performance of different
methods. Researchers often validate their methods using
synthetic simulation environments [12, 20, 17]. A version
of the synthetic approach is to modify multi-class classi-
fication datasets and treat supervised machine learning
methods as bandit policies to evaluate off-policy esti-
mators [21, 22, 23, 10]. An obvious problem with these
studies is that there is no guarantee that their simula-
tion environment is similar to real-world settings. To
solve this issue, [24, 25, 5, 13] use proprietary real-world
datasets. Since these datasets are not public, however, it
remains challenging to reproduce the results, and com-
pare their methods with new ideas in a fair manner.
This is in contrast to other domains of machine learn-
ing, where large-scale open datasets, such as the Ima-
geNet dataset [26], have been pivotal in driving objective
progress [27, 28, 29, 30, 31].

Our goal is to implement and evaluate OPE of bandit
algorithms in realistic and reproducible ways. We re-
lease the Open Bandit Dataset, a logged bandit feedback
collected on a large-scale fashion e-commerce platform,
ZOZOTOWN.1 ZOZOTOWN is the largest fashion EC
platform in Japan with over 3 billion USD annual Gross
Merchandise Value. When the platform produced the
data, it used Bernoulli Thompson Sampling (Bernoulli
TS) and Random policies to recommend fashion items to
users. The dataset includes an A/B test of these policies
and collected over 26 million records of users’ clicks and
the ground-truth about the performance of Bernoulli TS
and Random. To streamline and standardize the analysis
of the Open Bandit Dataset, we also provide the Open
Bandit Pipeline, a series of implementations of dataset
preprocessing, behavior bandit policy simulators, and

1https://corp.zozo.com/en/service/
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OPE estimators.

2. Setup
We consider a general multi-armed contextual bandit
setting. Let 𝒜 = {0, ...,𝑚} be a finite set of 𝑚+ 1 ac-
tions (equivalently, arms or treatments), that the decision
maker can choose from. Let 𝑌 (·) : 𝒜 → R denote a
potential reward function that maps actions into rewards
or outcomes, where 𝑌 (𝑎) is the reward when action 𝑎 is
chosen (e.g., whether a fashion item as an action results
in a click). Let 𝑋 denote a context vector (e.g., the user’s
demographic profile and user-item interaction history)
that the decision maker observes when picking an ac-
tion. We denote the finite set of possible contexts by
𝒳 . We think of (𝑌 (·), 𝑋) as a random vector with un-
known distribution 𝐺. Given a vector of (𝑌 (·), 𝑋), we
define the mean reward function 𝜇 : 𝒳 × 𝒜 → R as
𝜇(𝑥, 𝑎) = E[𝑌 (𝑎)|𝑋 = 𝑥].

We call a function 𝜋 : 𝒳 → ∆(𝒜) a policy, which
maps each context 𝑥 ∈ 𝒳 into a distribution over ac-
tions, where 𝜋(𝑎|𝑥) is the probability of taking action
𝑎 given a context vector 𝑥. Let {(𝑌𝑡, 𝑋𝑡, 𝐷𝑡)}𝑇𝑡=1 be
historical logged bandit feedback with 𝑇 rounds of obser-
vations. 𝐷𝑡 := (𝐷𝑡0, ..., 𝐷𝑡𝑚)′, where 𝐷𝑡𝑎 is a binary
variable indicating whether action 𝑎 is chosen in round 𝑡.
If 𝑎 is chosen in round 𝑡, 𝐷𝑡𝑎 = 1, otherwise 𝐷𝑡𝑎 = 0.
𝑌𝑡 :=

∑︀𝑚
𝑎=0 𝐷𝑡𝑎𝑌𝑡(𝑎) and 𝑋𝑡 denote the reward and

the context observed in round 𝑡, respectively. We assume
that a logged bandit feedback is generated by a behav-
ior policy 𝜋𝑏 as follows: (i) In each round 𝑡 = 1, ..., 𝑇 ,
(𝑌𝑡(·), 𝑋𝑡) is i.i.d. drawn from distribution 𝐺., (ii) Given
𝑋𝑡, an action is randomly chosen based on 𝜋𝑏(·|𝑋𝑡), cre-
ating the action choice 𝐷𝑡 and the associated reward
𝑌𝑡.

• In each round 𝑡 = 1, ..., 𝑇 , (𝑌𝑡(·), 𝑋𝑡) is i.i.d.
drawn from distribution 𝐺.

• Given 𝑋𝑡, an action is randomly chosen based on
𝜋𝑏(·|𝑋𝑡), creating the action choice 𝐷𝑡 and the
associated reward 𝑌𝑡.

Suppose that 𝜋𝑏 is fixed for all rounds, and thus 𝐷𝑡 is
i.i.d. across rounds. Because (𝑌𝑡(·), 𝑋𝑡) is i.i.d. across
rounds and 𝑌𝑡 =

∑︀𝑚
𝑎=0 𝐷𝑡𝑎𝑌𝑡(𝑎), each observation

(𝑌𝑡, 𝑋𝑡, 𝐷𝑡) is i.i.d. across rounds. Note that 𝐷𝑡 is inde-
pendent of 𝑌𝑡(·) conditional on 𝑋𝑡.

3. Off-Policy Evaluation

3.1. Prediction Target
We are interested in using the historical logged bandit
data to estimate the following policy value of any given

counterfactual policy 𝜋 which might be different from 𝜋𝑏:

𝑉 𝜋 := E(𝑌 (·),𝑋)∼𝐺[

𝑚∑︁
𝑎=0

𝑌 (𝑎)𝜋(𝑎|𝑋)] (1)

= E(𝑌 (·),𝑋)∼𝐺, 𝐷∼𝜋𝑏
[

𝑚∑︁
𝑎=0

𝑌 (𝑎)𝐷𝑎
𝜋(𝑎|𝑋)

𝜋𝑏(𝑎|𝑋)
] (2)

where the last equality uses the independence of 𝐷 and
𝑌 (·) conditional on 𝑋 and the definition of 𝜋𝑏(·|𝑋).
We allow the counterfactual policy 𝜋 to be degenerate,
i.e., it may choose a particular action with probability
1. Estimating 𝑉 𝜋 before implementing 𝜋 in an online
environment is valuable because 𝜋 may perform poorly
and damage user satisfaction. Additionally, it is possible
to select a counterfactual policy that maximizes the policy
value by comparing their estimated performances.

3.2. Benchmark Estimators
There are several approaches to estimate the value of the
counterfactual policy. A widely-used method, DM [32],
first learns a supervised machine learning model, such as
random forest, ridge regression, and gradient boosting,
to predict the mean reward function. DM then uses it to
estimate the policy value as

𝑉
𝜋

𝐷𝑀 =
1

𝑇

𝑇∑︁
𝑡=1

𝑚∑︁
𝑎=0

𝜋(𝑎|𝑋𝑡)𝜇̂(𝑎|𝑋𝑡).

where 𝜇̂(𝑎|𝑥) is the estimated reward function. If 𝜇̂(𝑎|𝑥)
is a good approximation to the mean reward function,
this estimator accurately predicts the policy value of the
counterfactual policy 𝑉 𝜋 . If 𝜇̂(𝑎|𝑥) fails to approximate
the mean reward function well, however, the final estima-
tor is no longer consistent. The model misspecification
issue is problematic because the extent of misspecifica-
tion cannot be easily quantified from data [22].

To alleviate the issue with DM, researchers often use
another estimator called IPW [33, 6]. IPW re-weights
the rewards by the ratio of the counterfactual policy and
behavior policy as

𝑉
𝜋

𝐼𝑃𝑊 =
1

𝑇

𝑇∑︁
𝑡=1

𝑚∑︁
𝑎=0

𝑌𝑡𝐷𝑡𝑎
𝜋(𝑎|𝑋𝑡)

𝜋𝑏(𝑎|𝑋𝑡)
.

When the behavior policy is known, the IPW estimator
is unbiased and consistent for the policy value. However,
it can have a large variance, especially when the coun-
terfactual policy significantly deviates from the behavior
policy.

The final approach is DR [21], which combines the
above two estimators as

𝑉
𝜋

𝐷𝑅 =
1

𝑇

𝑇∑︁
𝑡=1

𝑚∑︁
𝑎=0

(𝑌𝑡 − 𝜇̂(𝑎|𝑋𝑡))𝐷𝑡𝑎
𝜋(𝑎|𝑋𝑡)

𝜋𝑏(𝑎|𝑋𝑡)



Table 1
Statistics of the Open Bandit Dataset

Campaigns Behavior Policies #Data #Items Average Age CTR (𝑉 𝜋) Relative-CTR

ALL

Random 1,374,327

80 37.93

0.35% 1.00

Bernoulli TS 12,168,084 0.50% 1.43

Men’s

Random 452,949

34 37.68

0.51% 1.48

Bernoulli TS 4,077,727 0.67% 1.94

Women’s

Random 864,585

46 37.99

0.48% 1.39

Bernoulli TS 7,765,497 0.64% 1.84

Notes: Bernoulli TS stands for Bernoulli Thompson Sampling. #Data is the total number of user impressions

observed during the 7-day experiment. #Items is the total number of items having a non-zero probability of

being recommended by each behavior policy. Average Age is the average age of users in each campaign. CTR is

the percentage of a click being observed in log data, and this is the ground-truth performance of behavior

policies in each campaign. 95% confidence interval (CI) of CTR is calculated based on a normal approximation of

Bernoulli sampling. Relative-CTR is CTR relative to that of the Random policy for the “All” campaign.

+ 𝜋(𝑎|𝑋𝑡)𝜇̂(𝑎|𝑋𝑡).

DR mimics IPW to use a weighted version of rewards,
but DR also uses the estimated mean reward function as
a control variate to decrease the variance. It preserves
the consistency of IPW if either the importance weight or
the mean reward estimator is accurate (a property called
double robustness). Moreover, DR is semiparametric effi-
cient [5] when the mean reward estimator is correctly
specified. On the other hand, when it is wrong, this es-
timator can have larger asymptotic mean-squared-error
than IPW [34] and perform poorly in practice [35].

4. Dataset
We apply and evaluate the above methods by using real-
world data. Our data is logged bandit feedback data we
call the Open Bandit Dataset.2 The dataset is provided by
ZOZO, Inc.3, the largest Japanese fashion e-commerce
company with a market capitalization of over 5 billion
USD (as of May 2020). The company recently started us-
ing context-free multi-armed bandit algorithms to recom-
mend fashion items to users in their large-scale fashion
e-commerce platform called ZOZOTOWN.

We collected the data in a 7-days experiment in late
November 2019 on three “campaigns,” corresponding to
“all”, “men’s”, and “women’s” items, respectively. Each
campaign randomly uses either the Random algorithm
or the Bernoulli Thompson Sampling (Bernoulli TS) al-
gorithm for each user impression. In the notation of our
bandit setups, action 𝑎 is one of the possible fashion items,
while reward 𝑌 is a click indicator. We describe some

2https://research.zozo.com/data.html
3https://corp.zozo.com/en/about/profile/

statistics of the dataset in Table 1. The data is large and
contains many millions of recommendation instances.
The number of actions is also sizable, so this setting is
challenging for bandit algorithms and their OPE.

5. Conclusion and Future Work
To enable realistic and reproducible evaluation of off-
policy evaluation of bandit algorithms, we have publi-
cized the Open Bandit Dataset–a benchmark logged ban-
dit dataset collected on a large-scale fashion e-commerce
platform.

In the near future, we plan to publicize the perfor-
mance of the selected counterfactual policy in an online
environment. Such an evaluation will produce additional
log data generated by the contextual policy (while the
current open dataset contains only log data generated by
the old context-free policy). We aim to constantly expand
and improve the Open Bandit Dataset to include more
data and tasks.
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